en
Scientific article
English

Chemostratigraphy of the extrusive sequence of a Late Cretaceous Neotethyan ophiolite in southern Iran and its significance for the mode and tempo of subduction initiation magmatism and melt evolution in forearc tectonic settings

Published inJournal of the Geological Society, vol. 180, no. 6, jgs2023-080
Publication date2023-10-26
First online date2023-10-26
Abstract

Chemostratigraphy of lavas in extrusive sequences of modern and ancient forearc environments provides significant information on oceanic crust formation through progressive stages of melt evolution from subduction initiation magmatism (SIM) to arc infancy, and arc maturation-related magmatism. We present here new trace element and radiogenic Sr–Nd–Pb isotopic data from a Late Cretaceous ophiolite in the Outer Zagros Belt of southern Iran and discuss its magmatic development through SIM in a Neotethyan forearc setting. Initial volcanism produced the stratigraphically oldest boninitic (BON) lavas in the Haji-Abad ophiolite whose trace element ratios as well as Pb isotopic signatures indicate a refractory mantle source, which was contaminated by subducting slab-derived fluids. The BON lavas change structurally upwards into island-arc tholeiitic (IAT) lavas and their fractionated felsic derivatives that display isotopic evidence for the contribution of sediment-derived melts in their magmatic source(s). This melt evolution pattern of the Haji-Abad ophiolite marks a major difference from the progressive melt evolution trends reported from the Izu–Bonin–Mariana (IBM) forearc lava sequence, which starts at the bottom with forearc basalts (FAB) phasing up-section into BON and IAT affinity lavas. IAT lavas in the IBM are in turn overlain by calc-alkaline (CAL) lavas. Our geochemical modelling points to a probable existence of a less depleted, pre-subduction mantle whose partial melting probably generated primary magmas before the eruption of boninitic lavas, although the record of such magmas is missing in the Haji-Abad ophiolite. Our comparison of the chemostratigraphy of the Outer Zagros ophiolites with the documented record of subduction initiation generated volcanic rocks in the other Neotethyan ophiolites in the region and the IBM forearc setting strongly suggests that there is no single rule or template for SIM.

eng
Citation (ISO format)
SHAFAII MOGHADAM, Hadi et al. Chemostratigraphy of the extrusive sequence of a Late Cretaceous Neotethyan ophiolite in southern Iran and its significance for the mode and tempo of subduction initiation magmatism and melt evolution in forearc tectonic settings. In: Journal of the Geological Society, 2023, vol. 180, n° 6, p. jgs2023–080. doi: 10.1144/jgs2023-080
Main files (1)
Article (Published version)
accessLevelRestricted
Secondary files (1)
Identifiers
ISSN of the journal0016-7649
20views
1downloads

Technical informations

Creation11/14/2023 12:42:57 PM
First validation11/15/2023 3:17:29 PM
Update time11/15/2023 3:17:29 PM
Status update11/15/2023 3:17:29 PM
Last indexation05/06/2024 5:22:35 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack