Scientific article
OA Policy
English

Accurate modeling and performance evaluation of a total‐body pet scanner using Monte Carlo simulations

Published inMedical Physics, vol. 50, no. 11, p. 6815-6827
Publication date2023-11
First online date2023-09-04
Abstract

Background: The limited axial field‐of‐view (FOV) of conventional clinical positron emission tomography (PET) scanners (∼15 to 26 cm) allows detecting only 1% of all coincidence photons, hence limiting significantly their sensitivity. To overcome this limitation, the EXPLORER consortium developed the world's first total‐body PET/CT scanner that significantly increased the sensitivity, thus enabling to decrease the scan duration or injected dose.

Purpose: The purpose of this study is to perform and validate Monte Carlo simulations of the uEXPLORER PET scanner, which can be used to devise novel conceptual designs and geometrical configurations through obtaining features that are difficult to obtain experimentally.

Methods: The total‐body uEXPLORER PET scanner was modeled using GATE Monte Carlo (MC) platform. The model was validated through comparison with experimental measurements of various performance parameters, including spatial resolution, sensitivity, count rate performance, and image quality, according to NEMA‐NU2 2018 standards. Furthermore, the effects of the time coincidence window and maximum ring difference on the count rate and noise equivalent count rate (NECR) were evaluated.

Results: Overall, the validation study showed that there was a good agreement between the simulation and experimental results. The differences between the simulated and experimental total sensitivity for the NEMA and extended phantoms at the center of the FOV were 2.3% and 0.0%, respectively. The difference in peak NECR was 9.9% for the NEMA phantom and 1.0% for the extended phantom. The average bias between the simulated and experimental results of the full‐width‐at‐half maximum (FWHM) for six different positions and three directions was 0.12 mm. The simulations showed that using a variable coincidence time window based on the maximum ring difference can reduce the effect of random coincidences and improve the NECR compared to a constant time coincidence window. The NECR corresponding to 252‐ring difference was 2.11 Mcps, which is larger than the NECR corresponding to 336‐ring difference (2.04 Mcps).

Conclusion: The developed MC model of the uEXPLORER PET scanner was validated against experimental measurements and can be used for further assessment and design optimization of the scanner.

Keywords
  • Monte Carlo simulation
  • NEMA
  • Modeling
  • Performance evaluation
  • Total-body PET
  • Computer Simulation
  • Monte Carlo Method
  • Phantoms, Imaging
  • Positron Emission Tomography Computed Tomography
  • Positron-Emission Tomography / methods
  • Tomography, X-Ray Computed
Funding
  • Tehran University of Medical Sciences - [43140]
  • Private Foundation of Geneva University Hospitals - [RC-06-01]
Citation (ISO format)
REZAEI, Hadi et al. Accurate modeling and performance evaluation of a total‐body pet scanner using Monte Carlo simulations. In: Medical Physics, 2023, vol. 50, n° 11, p. 6815–6827. doi: 10.1002/mp.16707
Main files (1)
Article (Published version)
Identifiers
Journal ISSN0094-2405
66views
217downloads

Technical informations

Creation04/09/2023 19:49:07
First validation06/11/2023 16:57:42
Update time06/11/2023 16:57:42
Status update06/11/2023 16:57:42
Last indexation01/11/2024 06:35:38
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack