en
Scientific article
Open access
English

Temporal complexity of fMRI is reproducible and correlates with higher order cognition

Published inNeuroImage, vol. 230, 117760
Publication date2021-04-15
First online date2021-01-22
Abstract

It has been hypothesized that resting state networks (RSNs), extracted from resting state functional magnetic resonance imaging (rsfMRI), likely display unique temporal complexity fingerprints, quantified by their multiscale entropy patterns (McDonough and Nashiro, 2014). This is a hypothesis with a potential capacity for developing digital biomarkers of normal brain function, as well as pathological brain dysfunction. Nevertheless, a limitation of McDonough and Nashiro (2014) was that rsfMRI data from only 20 healthy individuals was used for the analysis. To validate this hypothesis in a larger cohort, we used rsfMRI datasets of 987 healthy young adults from the Human Connectome Project (HCP), aged 22-35, each with four 14.4-min rsfMRI recordings and parcellated into 379 brain regions. We quantified multiscale entropy of rsfMRI time series averaged at different cortical and sub-cortical regions. We performed effect-size analysis on the data in 8 RSNs. Given that the morphology of multiscale entropy is affected by the choice of its tolerance parameter (r) and embedding dimension (m), we repeated the analyses at multiple values of r and m including the values used in McDonough and Nashiro (2014). Our results reinforced high temporal complexity in the default mode and frontoparietal networks. Lowest temporal complexity was observed in the subcortical areas and limbic system. We investigated the effect of temporal resolution (determined by the repetition time TR) after downsampling of rsfMRI time series at two rates. At a low temporal resolution, we observed increased entropy and variance across datasets. Test-retest analysis showed that findings were likely reproducible across individuals over four rsfMRI runs, especially when the tolerance parameter r is equal to 0.5. The results confirmed that the relationship between functional brain connectivity strengths and rsfMRI temporal complexity changes over time scales. Finally, a non-random correlation was observed between temporal complexity of RSNs and fluid intelligence suggesting that complex dynamics of the human brain is an important attribute of high-level brain function.

eng
Keywords
  • Fluid intelligence
  • Functional MRI
  • Human connectome project
  • Multiscale entropy
  • Reproducibility
  • Resting state network
  • Temporal complexity
  • Adult
  • Brain / diagnostic imaging
  • Brain / physiology
  • Cognition / physiology
  • Connectome / methods
  • Connectome / standards
  • Entropy
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods
  • Magnetic Resonance Imaging / standards
  • Male
  • Motion
  • Nerve Net / diagnostic imaging
  • Nerve Net / physiology
  • Time Factors
  • Young Adult
Funding
  • European Commission - International Network of Excellence in Science Technology [754462]
  • National Health and Medical Research Council (NHMRC) - Neourobiology of human epilepsy: genes, cellular mechanisms,network and whole brain [628952]
  • National Health and Medical Research Council (NHMRC) - Structural and functional networks in the human brain: disturbance in disease and influence of genes. [1060312]
Citation (ISO format)
OMIDVARNIA, Amir et al. Temporal complexity of fMRI is reproducible and correlates with higher order cognition. In: NeuroImage, 2021, vol. 230, p. 117760. doi: 10.1016/j.neuroimage.2021.117760
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
ISSN of the journal1053-8119
34views
62downloads

Technical informations

Creation10/30/2022 3:36:25 PM
First validation05/16/2023 4:23:38 PM
Update time05/16/2023 4:23:38 PM
Status update05/16/2023 4:23:38 PM
Last indexation05/06/2024 3:53:29 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack