A Machine Learning‐Based Approach to Clinopyroxene Thermobarometry: Model Optimization and Distribution for Use in Earth Sciences
Published inJournal of geophysical research. Solid earth, vol. 127, no. 4
Publication date2022-04-09
First online date2022-04-09
Keywords
- Clinopyroxene thermobarometry
- Machine learning random forest
- Model optimization
Funding
- European Commission - Forecasting the recurrence rate of volcanic eruptions [677493]
- Swiss National Science Foundation - Quantifying the thermo-chemical evolution of magma reservoirs using mineral chemistry: a combined experimental and statistical approach [184632]
- Università degli Stu - “ENGAGE” FRB-2019
Citation (ISO format)
JORGENSON, Corin Christen et al. A Machine Learning‐Based Approach to Clinopyroxene Thermobarometry: Model Optimization and Distribution for Use in Earth Sciences. In: Journal of geophysical research. Solid earth, 2022, vol. 127, n° 4. doi: 10.1029/2021JB022904
Main files (1)
Article (Published version)
Identifiers
- PID : unige:168082
- DOI : 10.1029/2021JB022904
- PMID : 35860374
- PMCID : PMC9285709
Additional URL for this publicationhttps://onlinelibrary.wiley.com/doi/10.1029/2021JB022904
Journal ISSN2169-9313
