A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information
Published inEuropean Journal of Nuclear Medicine and Molecular Imaging, vol. 50, no. 7, p. 1881-1896
First online date2023-02-20
Abstract
Keywords
- Brain
- Deep learning
- PET
- Partial volume correction
- Partial volume effect
Affiliation entities
- Faculté de médecine / Section de médecine clinique / Département de psychiatrie
- Centres et instituts / Centre interfacultaire de neurosciences
- Faculté de médecine / Section de médecine clinique / Département de radiologie et informatique médicale
- Faculté de médecine / Section de médecine fondamentale / Département de neurosciences fondamentales
Funding
- Swiss National Science Foundation - Towards patient-specific hybrid whole-body PET parametric imaging [176052]
- Swiss National Science Foundation - Individual cognitive risk profiling in aging according to Amyloid, Tau and Neurodegeneration imaging biomarkers [185028]
- Swiss National Science Foundation - Strategic roadmap for the translation of tau biomarkers in the clinic: an international task force [188355]
- Swiss National Science Foundation - The Biological Basis of Cognitive Impairment due to Suspected Non-Alzheimer’s Pathology (SNAP) : Studying the interplay between amyloidosis and tau-related neurodegeneration [169876]
- Swiss National Science Foundation - Striatal presynaptic dopamine function in impulsivity: implications for understanding the neurobiological underpinnings of addictive disorders [179373]
Citation (ISO format)
SANAAT, Amirhossein et al. A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information. In: European Journal of Nuclear Medicine and Molecular Imaging, 2023, vol. 50, n° 7, p. 1881–1896. doi: 10.1007/s00259-023-06152-0
Main files (1)
Article (Published version)
Identifiers
- PID : unige:167027
- DOI : 10.1007/s00259-023-06152-0
- PMID : 36808000
Additional URL for this publicationhttps://link.springer.com/10.1007/s00259-023-06152-0
Journal ISSN1619-7070