Tensor Train Approximations: Riemannian Methods, Randomized Linear Algebra and Applications to Machine Learning
ContributorsVoorhaar, Rik
DirectorsVandereycken, Bart
Number of pages117
Imprimatur date2022-12-19
Defense date2022-12-15
Abstract
Keywords
- Tensors
- Tensor trains
- Numerical Analysis
- Numerical Linear Algebra
- Matrix Product State
- Randomized Linear Algebra
- Machine Learning
Affiliation entities
Research groups
Citation (ISO format)
VOORHAAR, Rik. Tensor Train Approximations: Riemannian Methods, Randomized Linear Algebra and Applications to Machine Learning. Doctoral Thesis, 2022. doi: 10.13097/archive-ouverte/unige:166308
Main files (1)
Thesis
Secondary files (1)
Identifiers
- PID : unige:166308
- DOI : 10.13097/archive-ouverte/unige:166308
- URN : urn:nbn:ch:unige-1663086
- Thesis number : Sc. 5707