A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences
ContributorsGraziani, Mara ; Dutkiewicz, Lidia; Calvaresi, Davide; Amorim, José Pereira; Yordanova, Katerina; Vered, Mor; Nair, Rahul Ramachandran; Abreu, Pedro Henriques; Blanke, Tobias; Pulignano, Valeria; Prior, John O.; Lauwaert, Lode; Reijers, Wessel; Depeursinge, Adrien; Andrearczyk, Vincent; Muller, Henning
Published inArtificial intelligence review
First online date2022-09-06
Abstract
Keywords
- Explainable artificial intelligence
- Interpretability
- Machine learning
Research group
Funding
- European Commission - A European Excellence Centre for Media, Society and Democracy [951911]
- European Commission - Resolving Precariousness: Advancing the Theory and Measurement of Precariousness across the paid/unpaid work continuum [833577]
- Hasler Foundation - [project numbers 2104]
- Fundação para a Ciência e a Tecnologia, I.P. - Interpretable Personalized Models for Oncological Diseases: a deep methodology on how different cancers evolve [SFRH/BD/136786/2018]
Citation (ISO format)
GRAZIANI, Mara et al. A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences. In: Artificial intelligence review, 2022. doi: 10.1007/s10462-022-10256-8
Main files (1)
Article (Published version)
Identifiers
- PID : unige:165821
- DOI : 10.1007/s10462-022-10256-8
- PMID : 36092822
- PMCID : PMC9446618
Commercial URLhttps://link.springer.com/10.1007/s10462-022-10256-8
ISSN of the journal0269-2821