Exhaustive neural importance sampling applied to Monte Carlo event generation
ContributorsPina-Otey, Sebastian; Gaitan, Vicens; Sanchez Nieto, Federico
; Lux, Thorsten
Published inPhysical review. D, vol. 102, no. 1, 013003
Publication date2020-07-16
First online date2020-07-16
Abstract
Keywords
- Electroweak interactions
- Neutrino: oscillation
- Numerical calculations: Monte Carlo
- Neutrino nucleus: interaction
- Channel cross section
- Density
- Flow
- Programming
- Data analysis method
NoteAppeared at the ICML 2020 Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (INNF+ 2020)
Affiliation entities
Citation (ISO format)
PINA-OTEY, Sebastian et al. Exhaustive neural importance sampling applied to Monte Carlo event generation. In: Physical review. D, 2020, vol. 102, n° 1, p. 013003. doi: 10.1103/physrevd.102.013003
Main files (1)
Article (Published version)
Identifiers
- PID : unige:164168
- DOI : 10.1103/physrevd.102.013003
- arXiv : 2005.12719
Additional URL for this publicationhttps://link.aps.org/doi/10.1103/PhysRevD.102.013003
Journal ISSN2470-0010