Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry
ContributorsClichet, Valentin; Harrivel, Véronique; Delette, Caroline; Guiheneuf, Eric; Gautier, Murielle; Morel, Pierre
; Assouan, Déborah; Merlusca, Lavinia; Beaumont, Marie; Lebon, Delphine; Caulier, Alexis; Marolleau, Jean-Pierre; Matthes, Thomas
; Vergez, François
; Garcon, Loic; Boyer, Thomas Paul Jean
Published inBritish journal of haematology, vol. 196, no. 5, p. 1175-1183
Publication date2022-03
First online date2021-11-03
Abstract
Keywords
- Artificial intelligence
- Monoclonal gammopathy of undetermined significance
- Multiparametric flow cytometry
- Multiple myeloma
- Aged
- Artificial Intelligence
- Diagnosis, Computer-Assisted
- Female
- Flow Cytometry
- Humans
- Male
- Monoclonal Gammopathy of Undetermined Significance / classification
- Monoclonal Gammopathy of Undetermined Significance / diagnosis
- Multiple Myeloma / classification
- Multiple Myeloma / diagnosis
- Paraproteinemias / classification
- Paraproteinemias / diagnosis
- Retrospective Studies
Affiliation entities
Citation (ISO format)
CLICHET, Valentin et al. Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry. In: British journal of haematology, 2022, vol. 196, n° 5, p. 1175–1183. doi: 10.1111/bjh.17933
Main files (1)
Article (Published version)
Identifiers
- PID : unige:163869
- DOI : 10.1111/bjh.17933
- PMID : 34730236
Journal ISSN0007-1048