Real-world patient trajectory prediction from clinical notes using artificial neural networks and UMLS-based extraction of concepts
Published inJournal of healthcare informatics research, vol. 5, no. 4, p. 474-496
Publication date2021-06-05
First online date2021-12
Abstract
Keywords
- Clinical notes
- Computer-aided prognosis
- MIMIC-III
- Patient trajectory prediction
- QuickUMLS
Affiliation Not a UNIGE publication
Research group
Citation (ISO format)
ZAGHIR, Jamil et al. Real-world patient trajectory prediction from clinical notes using artificial neural networks and UMLS-based extraction of concepts. In: Journal of healthcare informatics research, 2021, vol. 5, n° 4, p. 474–496. doi: 10.1007/s41666-021-00100-z
Main files (1)
Article (Published version)
Identifiers
- PID : unige:163448
- DOI : 10.1007/s41666-021-00100-z
- PMID : 35419508
- PMCID : PMC8982755
ISSN of the journal2509-498X