Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models' Performance and Robustness
ContributorsSanaat, Amirhossein ; Shiri Lord, Isaac ; Ferdowsi, Sohrab ; Arabi, Hossein; Zaidi, Habib
Published inJournal of digital imaging
First online date2022-02-08
Abstract
Keywords
- Attenuation correction
- Brain PET
- Data augmentation
- Deep learning
- Low-dose
Research groups
Funding
- Swiss National Science Foundation - Towards patient-specific hybrid whole-body PET parametric imaging [320030_176052]
- Private Foundation of Geneva University Hospitals - [RC-06-01]
Citation (ISO format)
SANAAT, Amirhossein et al. Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models” Performance and Robustness. In: Journal of digital imaging, 2022. doi: 10.1007/s10278-021-00536-0
Main files (1)
Article (Published version)
Identifiers
- PID : unige:158884
- DOI : 10.1007/s10278-021-00536-0
- PMID : 35137305
Commercial URLhttps://link.springer.com/10.1007/s10278-021-00536-0
Journal ISSN0897-1889