Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: the quest for the optimal machine learning algorithm
Published inClinical oncology, vol. 34, no. 2, p. 114-127
Publication date2022-02
First online date2021-12-03
Abstract
Keywords
- Fusion
- Machine learning
- Non-small cell lung cancer
- PET/CT
- Radiomics
Research groups
Citation (ISO format)
AMINI, Mehdi et al. Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: the quest for the optimal machine learning algorithm. In: Clinical oncology, 2022, vol. 34, n° 2, p. 114–127. doi: 10.1016/j.clon.2021.11.014
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
- PID : unige:158882
- DOI : 10.1016/j.clon.2021.11.014
- PMID : 34872823
Journal ISSN0936-6555