Scientific article
Open access

Adaptive Boundary Conditions for Exterior Stationary Flows in Three Dimensions

Published inJournal of mathematical fluid mechanics, vol. 12, no. 4, p. 554-575
Publication date2010

Recently there has been an increasing interest for a better understanding of ultra low Reynolds number flows. In this context we present a new setup which allows to efficiently solve the stationary incompressible Navier-Stokes equations in an exterior domain in three dimensions numerically. The main point is that the necessity to truncate for numerical purposes the exterior domain to a finite sub-domain leads to the problem of finding so called “artificial boundary conditions” to replace the conditions at infinity. To solve this problem we provide a vector filed that describes the leading asymptotic behavior of the solution at large distances. This vector field depends explicitly on drag and lift which are determined in a self-consistent way as part of the solution process. When compared with other numerical schemes the size of the computational domain that is needed to obtain the hydrodynamic forces with a given precision is drastically reduced, which in turn leads to an overall gain in computational efficiency of typically several orders of magnitude.

Citation (ISO format)
HEUVELINE, Vincent, WITTWER, Peter. Adaptive Boundary Conditions for Exterior Stationary Flows in Three Dimensions. In: Journal of mathematical fluid mechanics, 2010, vol. 12, n° 4, p. 554–575. doi: 10.1007/s00021-009-0302-9
Main files (1)
Article (Accepted version)
ISSN of the journal1422-6928

Technical informations

Creation05/11/2011 8:16:00 AM
First validation05/11/2011 8:16:00 AM
Update time03/14/2023 4:51:51 PM
Status update03/14/2023 4:51:51 PM
Last indexation01/15/2024 10:22:52 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack