en
Scientific article
Open access
English

Generative adversarial networks improve the reproducibility and discriminative power of radiomic features

Published inRadiology. Artificial Intelligence, vol. 2, no. 3, e190035
Publication date2020
Abstract

To assess the contribution of a generative adversarial network (GAN) to improve intermanufacturer reproducibility of radiomic features (RFs).

Citation (ISO format)
MARCADENT, Sandra et al. Generative adversarial networks improve the reproducibility and discriminative power of radiomic features. In: Radiology. Artificial Intelligence, 2020, vol. 2, n° 3, p. e190035. doi: 10.1148/ryai.2020190035
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
ISSN of the journal2638-6100
93views
70downloads

Technical informations

Creation09/09/2021 3:33:00 PM
First validation09/09/2021 3:33:00 PM
Update time03/16/2023 1:59:36 AM
Status update03/16/2023 1:59:36 AM
Last indexation10/19/2023 4:55:25 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack