UNIGE document Scientific Article
previous document  unige:144897  next document
add to browser collection
Title

Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis

Authors
Tavakol, Daniel Naveed
Tratwal, Josefine
Genta, Martina
Campos, Vasco
Burch, Patrick
Hoehnel, Sylke
show hidden authors show all authors [1 - 11]
Published in Biomaterials. 2020, vol. 232, 119665
Abstract Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs). Flow cytometry and hematopoietic colony forming assays demonstrate the stromal supportive capacity for in vitro hematopoiesis in the absence of exogenous cytokines. After in vitro culture, we recover a paste-like living injectable niche biomaterial from CCM co-cultures by controlled, partial dehydration. Cell viability and the association between stroma and HSPCs are maintained in this process. After subcutaneous injection of this living artificial niche in vivo, we find maintenance of stromal and hematopoietic populations over 12 weeks in immunodeficient mice. Indeed, vascularization is enhanced in the presence of HSPCs. Our approach provides a minimalistic, scalable, biomimetic in vitro model of hematopoiesis in a microcarrier format that preserves the HSPC progenitor function, while being injectable in-vivo without disrupting the cell-cell interactions established in vitro.
Keywords Bone marrow nicheMinimally invasiveStromaHematopoietic stem cellsExtramedullary HematopoiesisScaffold
Identifiers
PMID: 31881380
Full text
Structures
Research group Groupe Thomas Braschler (970)
Projects
Swiss National Science Foundation: PP00P2_163684
Swiss National Science Foundation: PZ00P2_161347
Citation
(ISO format)
TAVAKOL, Daniel Naveed et al. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. In: Biomaterials, 2020, vol. 232, p. 119665. doi: 10.1016/j.biomaterials.2019.119665 https://archive-ouverte.unige.ch/unige:144897

186 hits

4 downloads

Update

Deposited on : 2020-11-18

Export document
Format :
Citation style :