Scientific article
Review
OA Policy
English

Whole-body voxel-based internal dosimetry using deep learning

Published inEuropean Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 3, p. 670-682
Publication date2021
Abstract

In the era of precision medicine, patient-specific dose calculation using Monte Carlo (MC) simulations is deemed the gold standard technique for risk-benefit analysis of radiation hazards and correlation with patient outcome. Hence, we propose a novel method to perform whole-body personalized organ-level dosimetry taking into account the heterogeneity of activity distribution, non-uniformity of surrounding medium, and patient-specific anatomy using deep learning algorithms.

Keywords
  • Deep learning
  • Internal dosimetry
  • Monte Carlo
  • Patient specific
  • Voxel based
Notemettre à jour le pdfhttps://www.hug.ch/sites/interhug/files/structures/pinlab/documents/ejnmmi2020_dose.pdf
Citation (ISO format)
AKHAVANALLAF, Azadeh et al. Whole-body voxel-based internal dosimetry using deep learning. In: European Journal of Nuclear Medicine and Molecular Imaging, 2021, vol. 48, n° 3, p. 670–682. doi: 10.1007/s00259-020-05013-4
Main files (1)
Article (Published version)
Identifiers
Journal ISSN1619-7070
267views
178downloads

Technical informations

Creation02/09/2020 09:01:00
First validation02/09/2020 09:01:00
Update time15/03/2023 22:51:13
Status update15/03/2023 22:51:12
Last indexation31/10/2024 20:04:47
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack