Scientific article
English

Probing traps in the persistent phosphor SrAl2O4:Eu2+,Dy3+,B3+ - A wavelength, temperature and sample dependent thermoluminescence investigation

Published inJournal of Luminescence, vol. 222, no. 117113
Publication date2020
Abstract

Wavelength-dependent thermoluminescence (TL) experiments were performed on SrAl2O4:Eu, SrAl2O4:Eu,B, SrAl2O4:Eu,Dy and SrAl2O4:Eu,Dy,B polycrystalline samples. Excitation at 445 nm allows to selectively excite one of the two different Eu2+ ions substituting for Sr in the crystal, whereas excitation at 375 nm excites both Eu2+ ions. Incorporation of boron generates the deepest traps which contribute to the very long afterglow in this material, while dysprosium increases significantly (by a factor of about 4–8) the total number of traps involved in the afterglow of this persistent phosphor. Increasing the temperature at which the samples are irradiated (loaded) from 173 K to 248 K reveals that many new traps can only be occupied or activated at higher temperatures, leading to a strong increase of the integrated TL intensity, in particular for the Dy-containing samples. Boron does not appear to contribute to these thermally-activated traps significantly responsible for the long afterglow of SrAl2O4:Eu,Dy,B. The results of this study reveal that the diversity of traps leading to the long afterglow is much larger than previously reported in the literature. We propose that boron stabilizes F centers (which absorb in the far UV), while the presence of dysprosium induces an excitation-induced charge-transfer reaction Eu2+ + Dy3+ → Eu3+ + Dy2+. However, the principal traps responsible for the efficient afterglow are temperature-activated and appear to be associated with the green emitting Eu2+ ion on the Sr2 site coupled to a nearby dysprosium ion.

Keywords
  • Strontium aluminate
  • Persistent luminescence
  • Thermoluminescence
Citation (ISO format)
BIERWAGEN, Jakob et al. Probing traps in the persistent phosphor SrAl2O4:Eu2+,Dy3+,B3+ - A wavelength, temperature and sample dependent thermoluminescence investigation. In: Journal of Luminescence, 2020, vol. 222, n° 117113. doi: 10.1016/j.jlumin.2020.117113
Main files (1)
Article (Published version)
accessLevelRestricted
Identifiers
Journal ISSN0022-2313
251views
0downloads

Technical informations

Creation03/09/2020 14:41:00
First validation03/09/2020 14:41:00
Update time15/03/2023 22:31:54
Status update15/03/2023 22:31:53
Last indexation31/10/2024 19:35:42
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack