Scientific Article
previous document  unige:124832  next document
add to browser collection

Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I

Brockhoff, Marielle
Rion, Nathalie
Chojnowska, Kathrin
Wiktorowicz, Tatiana
Eickhorst, Christopher
Erne, Beat
Frank, Stephan
Angelini, Corrado
show hidden authors show all authors [1 - 12]
Published in Journal of Clinical Investigation. 2017, vol. 127, no. 2, p. 549-563
Abstract Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.
PMID: 27854220
Full text
Research group Muscle et jonction neuromusculaire (1007)
(ISO format)
BROCKHOFF, Marielle et al. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. In: Journal of Clinical Investigation, 2017, vol. 127, n° 2, p. 549-563. doi: 10.1172/JCI89616

175 hits



Deposited on : 2019-10-23

Export document
Format :
Citation style :