Scientific Article
previous document  unige:124492  next document
add to browser collection

Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway

Boulter, Etienne
Estrach, Soline
Tissot, Floriane S
Hennrich, Marco L
Tosello, Lionel
Cailleteau, Laurence
de la Ballina, Laura R
Pisano, Sabrina
show hidden authors show all authors [1 - 10]
Published in Nature Communications. 2018, vol. 9, no. 1, p. 4862
Abstract Mechanical and metabolic cues independently contribute to the regulation of cell and tissue homeostasis. However, how they cross-regulate each other during this process remains largely unknown. Here, we show that cellular metabolism can regulate integrin rigidity-sensing via the sphingolipid metabolic pathway controlled by the amino acid transporter and integrin coreceptor CD98hc (SLC3A2). Genetic invalidation of CD98hc in dermal cells and tissue impairs rigidity sensing and mechanical signaling downstream of integrins, including RhoA activation, resulting in aberrant tissue mechanical homeostasis. Unexpectedly, we found that this regulation does not occur directly through regulation of integrins by CD98hc but indirectly, via the regulation of sphingolipid synthesis and the delta-4-desaturase DES2. Loss of CD98hc decreases sphingolipid availability preventing proper membrane recruitment, shuttling and activation of upstream regulators of RhoA including Src kinases and GEF-H1. Altogether, our results unravel a novel cross-talk regulation between integrin mechanosensing and cellular metabolism which may constitute an important new regulatory framework contributing to mechanical homeostasis.
Keywords AnimalsDermis/cytology/metabolismFibroblasts/cytology/metabolismFusion Regulatory Protein 1Heavy Chain/deficiency/geneticsGene Expression RegulationHomeostasisLipogenesisMechanotransductionCellularMiceMiceTransgenicMultienzyme Complexes/genetics/metabolismOxidoreductases/genetics/metabolismPrimary Cell CultureRho Guanine Nucleotide Exchange Factors/genetics/metabolismSphingolipids/biosynthesisRho GTP-Binding Proteins/genetics/metabolismSrc-Family Kinases/genetics/metabolism
PMID: 30451822
Full text
Article (Published version) (7.5 MB) - public document Free access
Research group Métabolisme des lipides (1001)
(ISO format)
BOULTER, Etienne et al. Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway. In: Nature Communications, 2018, vol. 9, n° 1, p. 4862. doi: 10.1038/s41467-018-07268-w

138 hits



Deposited on : 2019-10-16

Export document
Format :
Citation style :