Scientific article

Second order Chebyshev methods based on orthogonal polynomials

Published inNumerische Mathematik, vol. 90, no. 1, p. 1-18
Publication date2001

Stabilized methods (also called Chebyshev methods) are explicit Runge-Kutta methods with extended stability domains along the negative real axis. These methods are intended for large mildly stiff problems, originating mainly from parabolic PDEs. The aim of this paper is to show that with the use of orthogonal polynomials, we can construct nearly optimal stability polynomials of second order with a three-term recurrence relation. These polynomials can be used to construct a new numerical method, which is implemented in a code called ROCK2. This new numerical method can be seen as a combination of van der Houwen-Sommeijer-type methods and Lebedev-type methods.

Citation (ISO format)
ABDULLE, Assyr, MEDOVIKOV, Alexei A. Second order Chebyshev methods based on orthogonal polynomials. In: Numerische Mathematik, 2001, vol. 90, n° 1, p. 1–18. doi: 10.1007/s002110100292
Main files (1)
Article (Published version)
ISSN of the journal0945-3245

Technical informations

Creation11/08/2010 1:40:00 PM
First validation11/08/2010 1:40:00 PM
Update time03/14/2023 4:08:29 PM
Status update03/14/2023 4:08:28 PM
Last indexation08/28/2023 7:54:21 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack