Scientific article
OA Policy
English

Functional dissection of the apicomplexan glideosome molecular architecture

Published inCell host & microbe, vol. 8, no. 4, p. 343-357
Publication date2010
Abstract

The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.

Citation (ISO format)
FRENAL, Karine et al. Functional dissection of the apicomplexan glideosome molecular architecture. In: Cell host & microbe, 2010, vol. 8, n° 4, p. 343–357. doi: 10.1016/j.chom.2010.09.002
Main files (2)
Article (Accepted version)
accessLevelPublic
Article (Accepted version)
accessLevelPublic
Identifiers
Journal ISSN1934-6069
861views
932downloads

Technical informations

Creation26/10/2010 16:40:00
First validation26/10/2010 16:40:00
Update time14/03/2023 16:08:02
Status update14/03/2023 16:08:02
Last indexation29/10/2024 17:18:41
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack