Scientific article

Lie algebras generated by 3-forms

Publication date2006

Let U be a real vector space, B an inner product on U and T ∈ ∧U ∗ a 3-form. The 3-form T defines two natural maps, [·,·] U :∧2U →U and σ :U →∧2U ∗ ∼= so(U,B) given by [x,y] U = 2B#(T (x, y, ·)) and σ(x) = T (x, ·, ·). We show that [·,·] U is a Lie bracket if and only if gT ≡ Im(σ ) is a Lie subalgebra of so(U,B).

Citation (ISO format)
ROHR, Rudolf Philippe. Lie algebras generated by 3-forms. In: Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 2006, vol. 342, n° 6, p. 381–385. doi: 10.1016/j.crma.2006.01.006
Main files (1)
Article (Published version)
ISSN of the journal0764-4442

Technical informations

Creation10/12/2010 1:53:00 PM
First validation10/12/2010 1:53:00 PM
Update time03/14/2023 4:07:28 PM
Status update03/14/2023 4:07:28 PM
Last indexation01/15/2024 9:42:21 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack