Scientific article

Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt

Published inPhysical Review. B, Condensed Matter, vol. 52, no. 17, p. 12690-12695
Publication date1995

We studied liquid and vitreous SiO₂ by performing first-principles molecular-dynamics simulations. Diffusion in the liquid is shown to occur through correlated jump events, which disrupt the network only for short time periods. The persistence of the network even at high temperatures is confirmed by the average structural properties of the liquid. By quenching from the melt, we obtained a model for the glass, which forms a perfectly chemically ordered network. Structural and electronic properties of our model glass present a remarkable agreement with vitreous SiO₂: the calculated total structure factor closely agrees with data from neutron diffraction experiments and features in the x-ray photoemission spectrum are well reproduced by the electronic density of states. This agreement strongly supports other structural properties which are yet unavailable from experiment such as partial pair correlation functions and bond-angle distributions. A comparative study of the electronic density of states in liquid, vitreous, and crystalline SiO₂ shows that enhancement of disorder gives rise to a reduction of the gap.

Citation (ISO format)
SARNTHEIN, Johannes, PASQUARELLO, Alfredo, CAR, Roberto. Model of vitreous SiO<sub>2</sub> generated by an <i>ab initio<i> molecular-dynamics quench from the melt</i></i>. In: Physical Review. B, Condensed Matter, 1995, vol. 52, n° 17, p. 12690–12695. doi: 10.1103/PhysRevB.52.12690
Main files (1)
Article (Published version)
ISSN of the journal1098-0121

Technical informations

Creation03/01/2019 9:43:00 AM
First validation03/01/2019 9:43:00 AM
Update time03/15/2023 3:48:27 PM
Status update03/15/2023 3:48:27 PM
Last indexation01/17/2024 5:01:06 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack