UNIGE document Scientific Article
previous document  unige:111541  next document
add to browser collection

Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol

Inglese, P
Amoroso, N
Bocchetta, M
Bruno, S
Chincarini, A
Errico, R
show hidden authors show all authors [1 - 14]
Published in Physica Medica. 2015, vol. 31, no. 8, p. 1085-1091
Abstract The hippocampus has a key role in a number of neurodegenerative diseases, such as Alzheimer's Disease. Here we present a novel method for the automated segmentation of the hippocampus from structural magnetic resonance images (MRI), based on a combination of multiple classifiers. The method is validated on a cohort of 50 T1 MRI scans, comprehending healthy control, mild cognitive impairment, and Alzheimer's Disease subjects. The preliminary release of the EADC-ADNI Harmonized Protocol training labels is used as gold standard. The fully automated pipeline consists of a registration using an affine transformation, the extraction of a local bounding box, and the classification of each voxel in two classes (background and hippocampus). The classification is performed slice-by-slice along each of the three orthogonal directions of the 3D-MRI using a Random Forest (RF) classifier, followed by a fusion of the three full segmentations. Dice coefficients obtained by multiple RF (0.87 ± 0.03) are larger than those obtained by a single monolithic RF applied to the entire bounding box, and are comparable to state-of-the-art. A test on an external cohort of 50 T1 MRI scans shows that the presented method is robust and reliable. Additionally, a comparison of local changes in the morphology of the hippocampi between the three subject groups is performed. Our work showed that a multiple classification approach can be implemented for the segmentation for the measurement of volume and shape changes of the hippocampus with diagnostic purposes.
Keywords AlgorithmsHippocampusImagingThree-Dimensional/methodsMagnetic Resonance Imaging
PMID: 26481815
Full text
Article (Published version) (935 Kb) - public document Free access
Research group Troubles de mémoire et maladie d'Alzeimer (935)
(ISO format)
INGLESE, P et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. In: Physica Medica, 2015, vol. 31, n° 8, p. 1085-1091. doi: 10.1016/j.ejmp.2015.08.003 https://archive-ouverte.unige.ch/unige:111541

233 hits



Deposited on : 2018-11-28

Export document
Format :
Citation style :