Scientific article
Open access

Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis

Published inPhysical Review. D, vol. 98, no. 6
  • Open Access - SCOAP3
Publication date2018

We study the generation of electromagnetic fields during inflation when the conformal invariance of Maxwell's action is broken by the kinetic coupling f2(ϕ)FμνFμν of the electromagnetic field to the inflaton field ϕ. We consider the case where the coupling function f(ϕ) decreases in time during inflation and, as a result, the electric component of the energy density dominates over the magnetic one. The system of equations which governs the joint evolution of the scale factor, inflaton field, and electric energy density is derived. The backreaction occurs when the electric energy density becomes as large as the product of the slow-roll parameter ε and inflaton energy density, ρE∼ερinf. It affects the inflaton field evolution and leads to the scale-invariant electric power spectrum and the magnetic one which is blue with the spectral index nB=2 for any decreasing coupling function. This gives an upper limit on the present-day value of observed magnetic fields below 10−22 G. It is worth emphasizing that since the effective electric charge of particles eeff=e/f is suppressed by the coupling function, the Schwinger effect becomes important only at the late stages of inflation when the inflaton field is close to the minimum of its potential. The Schwinger effect abruptly decreases the value of the electric field, helping to finish the inflation stage and enter the stage of preheating. It effectively produces the charged particles, implementing the Schwinger reheating scenario even before the fast oscillations of the inflaton. The numerical analysis is carried out in the Starobinsky model of inflation for the powerlike f∝aα and Ratra-type f=exp(βϕ/Mp) coupling functions.

Citation (ISO format)
SOBOL, O. O. et al. Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. In: Physical Review. D, 2018, vol. 98, n° 6. doi: 10.1103/PhysRevD.98.063534
Main files (1)
Article (Published version)
ISSN of the journal0556-2821

Technical informations

Creation10/01/2018 1:46:39 PM
First validation10/01/2018 1:46:39 PM
Update time03/15/2023 8:43:26 AM
Status update03/15/2023 8:43:25 AM
Last indexation02/12/2024 11:35:06 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack