Scientific article
OA Policy
English

A fibrin biofilm covers blood clots and protects from microbial invasion

Published inJournal of Clinical Investigation, vol. 128, no. 8, p. 3356-3368
Publication date2018
Abstract

Hemostasis requires conversion of fibrinogen to fibrin fibers that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining clots in human and mouse models. We demonstrated that only fibrin is required for formation of the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibers. It was digested by plasmin, and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.

Keywords
  • Coagulation
  • Hematology
  • Vascular Biology
Citation (ISO format)
MACRAE, Fraser L et al. A fibrin biofilm covers blood clots and protects from microbial invasion. In: Journal of Clinical Investigation, 2018, vol. 128, n° 8, p. 3356–3368. doi: 10.1172/JCI98734
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
Journal ISSN0021-9738
366views
173downloads

Technical informations

Creation04/08/2018 10:54:00
First validation04/08/2018 10:54:00
Update time22/05/2024 15:25:10
Status update22/05/2024 15:25:10
Last indexation31/10/2024 11:03:46
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack