en
Scientific article
English

Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent

Published inChemistry - A European Journal, vol. 24, no. 6, p. 1348-1357
Publication date2018
Abstract

Gadolinium‐loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd‐complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood‐pool contrast agents. Using l‐tyrosine as a three‐functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd‐1,4,7,10‐tetraazacyclododecane‐1‐4‐7‐triacetic acid (Gd‐DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core–shell nanomicellar architecture. The self‐assembly into Gd‐loaded monodispersed 10–20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr‐MRI) display very high relaxivity at 29 mm−1 s−1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr‐MRI an excellent candidate for a new supramolecular blood‐pool MRI CA.

Keywords
  • Magnetic resonance imaging
  • Contrast agent
  • Gadolinium
  • Nanomicelles
  • Self-assembly
Citation (ISO format)
BABIC, Andréj et al. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent. In: Chemistry - A European Journal, 2018, vol. 24, n° 6, p. 1348–1357. doi: 10.1002/chem.201703962
Main files (1)
Article (Published version)
accessLevelRestricted
Identifiers
ISSN of the journal0947-6539
507views
1downloads

Technical informations

Creation04/11/2018 4:29:00 PM
First validation04/11/2018 4:29:00 PM
Update time03/15/2023 8:14:14 AM
Status update03/15/2023 8:14:14 AM
Last indexation01/17/2024 2:51:18 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack