Scientific Article
previous document  unige:100729  next document
add to browser collection
Title

Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice

Authors
Jurczak, Michael J
Lee, Ann-Hwee
Lee, Hui-Young
Birkenfeld, Andreas L
Guigni, Blas A
Kahn, Mario
Samuel, Varman T
show hidden authors show all authors [1 - 10]
Published in Journal of Biological Chemistry. 2012, vol. 287, no. 4, p. 2558-67
Abstract Hepatic insulin resistance has been attributed to both increased endoplasmic reticulum (ER) stress and accumulation of intracellular lipids, specifically diacylglycerol (DAG). The ER stress response protein, X-box-binding protein-1 (XBP1), was recently shown to regulate hepatic lipogenesis, suggesting that hepatic insulin resistance in models of ER stress may result from defective lipid storage, as opposed to ER-specific stress signals. Studies were designed to dissociate liver lipid accumulation and activation of ER stress signaling pathways, which would allow us to delineate the individual contributions of ER stress and hepatic lipid content to the pathogenesis of hepatic insulin resistance. Conditional XBP1 knock-out (XBP1Δ) and control mice were fed fructose chow for 1 week. Determinants of whole-body energy balance, weight, and composition were determined. Hepatic lipids including triglyceride, DAGs, and ceramide were measured, alongside markers of ER stress. Whole-body and tissue-specific insulin sensitivity were determined by hyperinsulinemic-euglycemic clamp studies. Hepatic ER stress signaling was increased in fructose chow-fed XBP1Δ mice as reflected by increased phosphorylated eIF2α, HSPA5 mRNA, and a 2-fold increase in hepatic JNK activity. Despite JNK activation, XBP1Δ displayed increased hepatic insulin sensitivity during hyperinsulinemic-euglycemic clamp studies, which was associated with increased insulin-stimulated IRS2 tyrosine phosphorylation, reduced hepatic DAG content, and reduced PKCε activity. These studies demonstrate that ER stress and IRE1α-mediated JNK activation can be disassociated from hepatic insulin resistance and support the hypothesis that hepatic insulin resistance in models of ER stress may be secondary to ER stress modulation of hepatic lipogenesis.
Keywords AnimalsDNA-Binding Proteins/genetics/metabolismEndoplasmic Reticulum/genetics/metabolismEndoplasmic Reticulum StressEndoribonucleases/genetics/metabolismEukaryotic Initiation Factor-2/genetics/metabolismHeat-Shock Proteins/genetics/metabolismInsulin Receptor Substrate Proteins/genetics/metabolismInsulin ResistanceJNK Mitogen-Activated Protein Kinases/genetics/metabolismLipid MetabolismLiver/metabolismMiceMiceKnockoutPhosphorylationProtein-Serine-Threonine Kinases/genetics/metabolismRegulatory Factor X Transcription FactorsSignal Transduction/geneticsTranscription Factors/genetics/metabolismX-Box Binding Protein 1
Identifiers
PMID: 22128176
Full text
Article (Published version) (1.8 MB) - document accessible for UNIGE members only Limited access to UNIGE
Citation
(ISO format)
JURCZAK, Michael J et al. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. In: Journal of Biological Chemistry, 2012, vol. 287, n° 4, p. 2558-67. https://archive-ouverte.unige.ch/unige:100729

11 hits

0 download

Update

Deposited on : 2017-12-21

Export document
Format :
Citation style :