en
Scientific article
English

Real Zeuthen numbers for two lines

ContributorsBertrand, Benoît
Published inInternational mathematics research notices, vol. 8, no. ID rnn014, 8 p.
Publication date2008
Abstract

Given three natural numbers $k,l,d$ such that $k+l=d(d+3)/2$, the Zeuthen number $N_{d}(l)$ is the number of nonsingular complex algebraic curves of degree $d$ passing through $k$ points and tangent to $l$ lines in $PP^2$. It does not depend on the generic configuration $C$ of points and lines chosen. If the points and lines are real, the corresponding number $N_{d}^RR(l,C)$ of real curves usually depends on the configuration chosen. We use Mikhalkin's tropical correspondence theorem to prove that for two lines the real Zeuthen problem is maximal: there exists a configuration $C$ such that $N_{d}^RR(2,C)=N_{d}(2)$. The correspondence theorem reduces the computation to counting certain lattice paths with multiplicities.

Classification
  • arxiv : math.AG
Note6 pages, 3 figures
Citation (ISO format)
BERTRAND, Benoît. Real Zeuthen numbers for two lines. In: International mathematics research notices, 2008, vol. 8, n° ID rnn014, p. 8 p. doi: 10.1093/imrn/rnn014
Main files (1)
Article (Accepted version)
accessLevelRestricted
Identifiers
ISSN of the journal1073-7928
541views
0downloads

Technical informations

Creation02.07.2010 14:05:00
First validation02.07.2010 14:05:00
Update time14.03.2023 15:49:42
Status update14.03.2023 15:49:42
Last indexation15.01.2024 20:35:27
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack