Scientific article

The Stueckelberg Field

Published inInternational journal of modern physics A, vol. 19, no. 20, p. 3265-3347
Publication date2004

In 1938, Stueckelberg introduced a scalar field which makes an Abelian gauge theory massive but preserves gauge invariance. The Stueckelberg mechanism is the introduction of new fields to reveal a symmetry of a gauge--fixed theory. We first review the Stueckelberg mechanism in the massive Abelian gauge theory. We then extend this idea to the standard model, stueckelberging the hypercharge U(1) and thus giving a mass to the physical photon. This introduces an infrared regulator for the photon in the standard electroweak theory, along with a modification of the weak mixing angle accompanied by a plethora of new effects. Notably, neutrinos couple to the photon and charged leptons have also a pseudo-vector coupling. Finally, we review the historical influence of Stueckelberg's 1938 idea, which led to applications in many areas not anticipated by the author, such as strings. We describe the numerous proposals to generalize the Stueckelberg trick to the non-Abelian case with the aim to find alternatives to the standard model. Nevertheless, the Higgs mechanism in spontaneous symmetry breaking remains the only presently known way to give masses to non-Abelian vector fields in a renormalizable and unitary theory.

  • Stueckelberg
  • Proca
  • Photon
  • Electroweak
  • Massive Yang–Mills
Citation (ISO format)
RUEGG, Henri, RUIZ-ALTABA, Marti. The Stueckelberg Field. In: International journal of modern physics A, 2004, vol. 19, n° 20, p. 3265–3347. doi: 10.1142/S0217751X04019755
Main files (1)
Article (Submitted version)
ISSN of the journal0217-751X

Technical informations

Creation07/07/2016 11:12:00 AM
First validation07/07/2016 11:12:00 AM
Update time03/15/2023 12:33:06 AM
Status update03/15/2023 12:33:06 AM
Last indexation01/16/2024 9:18:07 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack