UNIGE document Scientific Article
previous document  unige:85019  next document
add to browser collection
Title

In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases

Authors
Olsburgh, Steven
Davidson, Carel
Published in European Journal of Oral Sciences. 2003, vol. 111, no. 1, p. 73-80
Abstract Composite inlays are indicated for large cavities, which frequently extend cervically into dentin. The purpose of this study was to compare in vitro the marginal and internal adaptation of class II fine hybrid composite inlays (Herculite, Kerr) made with or without composite bases, having different physical properties. Freshly extracted human molars were used for this study. The base extended up to the cervical margins on both sides and was made from Revolution (Kerr), Tetric flow (Vivadent), Dyract (Detrey-Dentsply) or Prodigy (Kerr), respectively. Before, during and after mechanical loading (1 million cycles, with a force varying from 50 to 100 N), the proximal margins of the inlay were assessed by scanning electron microscopy. Experimental data were analysed using non-parametric tests. The final percentages of marginal tooth fracture varied from 30.7% (no base) to 37.6% (Dyract). In dentin, percentages of marginal opening varied from 9.2% (Tetric Flow) to 30.1% (Prodigy), however, without significant difference between base products. Mean values of opened internal interface with dentin varied from 11.06% (Tetric Flow) to 28.15% (Prodigy). The present results regarding dentin adaptation confirmed that the physical properties of a base can influence composite inlay adaptation and that the medium-rigid flowable composite Tetric Flow is a potential material to displace, in a coronal position, proximal margins underneath composite inlays.
Keywords CompomersComposite ResinsDental Cavity LiningDental Marginal AdaptationDental Stress AnalysisDentin-Bonding AgentsHumansInlaysMaterials TestingMethacrylatesMicroscopyElectronScanningMolarRandom AllocationSilicatesWeight-BearingClass II restorationComposite inlayBase-liningMarginal adaptationInternal adaptation
Identifiers
PMID: 12558811
Full text
Article (Published version) (225 Kb) - public document Free access
Structures
Research group Groupe Krejci Ivo (médecine dentaire) (240)
Citation
(ISO format)
DIETSCHI, Didier et al. In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. In: European Journal of Oral Sciences, 2003, vol. 111, n° 1, p. 73-80. https://archive-ouverte.unige.ch/unige:85019

112 hits

124 downloads

Update

Deposited on : 2016-07-04

Export document
Format :
Citation style :