UNIGE document Doctoral Thesis
previous document  unige:84496  next document
add to browser collection
Title

Stokes phenomenon, dynamical r-matrices and Poisson geometry

Author
Director
Defense Thèse de doctorat : Univ. Genève, 2016 - Sc. 4930 - 2016/05/20
Abstract In this thesis, we study the Poisson geometry of moduli spaces of flat and meromorphic connections over Riemann surfaces, the latter involves the Stokes phenomenon. The aim is to understand some new achievements in this direction from the perspective of mathematical physics. The main results of this thesis are: (1) a construction of a gauge transformation between the standard classical r-matrix and the Alekseev-Meinrenken dynamical r-matrix, using the Stokes data of a certain irregular Riemann-Hilbert problem; (2) an extension to the quantum analogue of the Stokes phenomenon, and its relation with the Yang-Baxter equation; (3) a new finite dimensional description of the Atiyah-Bott symplectic form on the moduli spaces of flat connections over surfaces, using generalised dynamical r-matrices induced by gauge fixing procedures.
Identifiers
URN: urn:nbn:ch:unige-844965
Full text
Thesis (936 Kb) - public document Free access
Structures
Research group Groupe de Lie et espaces de modules
Citation
(ISO format)
XU, Xiaomeng. Stokes phenomenon, dynamical r-matrices and Poisson geometry. Université de Genève. Thèse, 2016. https://archive-ouverte.unige.ch/unige:84496

231 hits

158 downloads

Update

Deposited on : 2016-06-13

Export document
Format :
Citation style :