Scientific Article
previous document  unige:48337  next document
add to browser collection

Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses

Chumakov, A. I.
Monaco, G.
Fontana, A.
Bosak, A.
Hermann, R. P.
Bessas, D.
Crichton, W. A.
show hidden authors show all authors [1 - 25]
Published in Physical Review Letters. 2014, vol. 112, p. 025502
Abstract We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.
Keywords ThermodynamicsAtomic dynamicsSilica glassSilica polymorphDisorderBoson peak
Full text
(ISO format)
CHUMAKOV, A. I. et al. Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses. In: Physical Review Letters, 2014, vol. 112, p. 025502.

202 hits



Deposited on : 2015-03-18

Export document
Format :
Citation style :