en
Scientific article
Open access
English

The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods

Published inComptes rendus. Mathématique, vol. 349, no. 19-20, p. 1041-1046
Publication date2011
Abstract

A finite element method with numerical quadrature is considered for the solution of a class of second-order quasilinear elliptic problems of nonmonotone type. Optimal a-priori error estimates for the $H^1$ and the $L^2$ norms are derived. The uniqueness of the finite element solution is established for a sufficiently fine mesh. Our results permit the analysis of numerical homogenization methods.

Keywords
  • Nonmonotone quasilinear elliptic problem
  • A priori error estimates
  • Numerical quadrature
  • Variational crime
  • Finite elements
Affiliation Not a UNIGE publication
Research group
Citation (ISO format)
ABDULLE, Assyr, VILMART, Gilles. The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods. In: Comptes rendus. Mathématique, 2011, vol. 349, n° 19-20, p. 1041–1046. doi: 10.1016/j.crma.2011.09.005
Main files (1)
Article (Accepted version)
accessLevelPublic
Identifiers
ISSN of the journal1631-073X
567views
264downloads

Technical informations

Creation11/17/2014 3:42:00 PM
First validation11/17/2014 3:42:00 PM
Update time03/14/2023 10:16:01 PM
Status update03/14/2023 10:16:01 PM
Last indexation05/02/2024 3:44:59 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack