Scientific article
Open access

Ion-Gated Synthetic Photosystems

Published inJournal of the American Chemical Society, vol. 136, no. 15, p. 5575-5578
Publication date2014

Herein, molecular strings of ions built along charge-transporting channels are shown to dramatically increase photocurrents and enable charge transport over long distances, thus confirming the existence and significance of ion-gated photosystems. For their synthesis, ordered and oriented stacks of naphthalenediimides were grown on indium tin oxide by ring-opening disulfide-exchange polymerization. To these charge-transporting channels, coaxial strings of anions or cations—fixed, mobile, complete, partial, pure, or mixed—were added by orthogonal hydrazone exchange. The presence of partially protonated carboxylates was found to most significantly increase activity, implying that they both attract holes and repel electrons, that is, facilitate photoinduced charge separation and hinder charge recombination at the same time. As a result of this quite remarkable situation, photocurrents increased rather than decreased with increasing charge stabilization on their “stepping stones.” The presence of mobile anions facilitated long-distance charge transport through thick films. Turned off by inhibited anion mobility, that is, proton hopping, hole/proton antiport is identified to account for long-distance charge transport in ion-gated photosystems.

Citation (ISO format)
SAKAI, Naomi et al. Ion-Gated Synthetic Photosystems. In: Journal of the American Chemical Society, 2014, vol. 136, n° 15, p. 5575–5578. doi: 10.1021/ja501389g
Main files (2)
Article (Published version)
Article (Accepted version)
ISSN of the journal0002-7863

Technical informations

Creation04/16/2014 9:04:00 AM
First validation04/16/2014 9:04:00 AM
Update time03/14/2023 9:08:22 PM
Status update03/14/2023 9:08:22 PM
Last indexation02/12/2024 12:42:13 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack