Scientific article
Open access

Computational support for a scaffolding mechanism of centriole assembly

Published inScientific reports, vol. 6, no. 1, p. 1-9; 27075
Publication date2016-06-08
First online date2016-06-08

Centrioles are essential for forming cilia, flagella and centrosomes. Successful centriole assembly requires proteins of the SAS-6 family, which can form oligomeric ring structures with ninefold symmetry in vitro . While important progress has been made in understanding SAS-6 protein biophysics, the mechanisms enabling ring formation in vivo remain elusive. Likewise, the mechanisms by which a nascent centriole forms near-orthogonal to an existing one are not known. Here, we investigate possible mechanisms of centriole assembly using coarse-grained Brownian dynamics computer simulations in combination with a rate equation approach. Our results suggest that without any external factors, strong stabilization associated with ring closure would be needed to enable efficient ring formation. Strikingly, our simulations reveal that a scaffold-assisted assembly mechanism can trigger robust ring formation owing to local cooperativity, and that this mechanism can also impart orthogonalilty to centriole assembly. Overall, our findings provide novel insights into the organizing principles governing the assembly of this important organelle.

Affiliation Not a UNIGE publication
  • European Commission - Dissecting the mechanisms governing centriole formation [340227]
Citation (ISO format)
KLEIN, Heinrich C. R. et al. Computational support for a scaffolding mechanism of centriole assembly. In: Scientific reports, 2016, vol. 6, n° 1, p. 1–9. doi: 10.1038/srep27075
Main files (1)
Article (Published version)
ISSN of the journal2045-2322

Technical informations

Creation02/17/2024 9:48:33 AM
First validation02/23/2024 1:52:38 PM
Update time02/23/2024 1:52:38 PM
Status update02/23/2024 1:52:38 PM
Last indexation05/06/2024 5:59:57 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack