Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding
Published inClinical oncology, vol. 35, no. 11, p. 713-725
Publication date2023-11
First online date2023-08-08
Abstract
Keywords
- Histopathology
- NSCLC
- PET/CT
- Machine learning
- Radiomics
- Algorithms
- Carcinoma, Non-Small-Cell Lung / diagnostic imaging
- Carcinoma, Non-Small-Cell Lung / pathology
- Humans
- Lung Neoplasms / diagnostic imaging
- Lung Neoplasms / pathology
- Machine Learning
- Positron Emission Tomography Computed Tomography
Research groups
Citation (ISO format)
KHODABAKHSHI, Zahra et al. Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding. In: Clinical oncology, 2023, vol. 35, n° 11, p. 713–725. doi: 10.1016/j.clon.2023.08.003
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
- PID : unige:172910
- DOI : 10.1016/j.clon.2023.08.003
- PMID : 37599160
Additional URL for this publicationhttps://linkinghub.elsevier.com/retrieve/pii/S0936655523002777
Journal ISSN0936-6555