Scientific article
Open access

Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers

Published inNature communications, vol. 14, no. 1, 4969
Publication date2023-08-17
First online date2023-08-17

In twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI3 , known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI3 disfavors smooth non-collinear phases in twisted bilayers. Here, we report the experimental observation of three distinct magnetic phases—one ferromagnetic and two antiferromagnetic—in exfoliated CrBr3 multilayers, and reveal that the uniaxial anisotropy is significantly smaller than in CrI3 . These results are obtained by magnetoconductance measurements on CrBr3 tunnel barriers and Raman spectroscopy, in conjunction with density functional theory calculations, which enable us to identify the stackings responsible for the different interlayer magnetic couplings. The detection of all locally stable magnetic states predicted to exist in CrBr3 and the excellent agreement found between theory and experiments, provide complete information on the stacking-dependent interlayer exchange energy and establish twisted bilayer CrBr3 as an ideal system to deterministically create non-collinear magnetic phases.

  • Swiss National Science Foundation -
  • National Natural Science Foundation of China - [11904276]
  • EU graphene flagship project -
  • the Levi-Montalcini program -
Citation (ISO format)
YAO, Fengrui et al. Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr<sub>3</sub> multilayers. In: Nature communications, 2023, vol. 14, n° 1, p. 4969. doi: 10.1038/s41467-023-40723-x
Main files (1)
Article (Published version)
ISSN of the journal2041-1723

Technical informations

Creation09/27/2023 11:59:13 AM
First validation09/27/2023 1:23:12 PM
Update time09/27/2023 1:23:12 PM
Status update09/27/2023 1:23:12 PM
Last indexation02/12/2024 12:33:31 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack