Scientific article
OA Policy
English

Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient

Published inNature communications, vol. 14, 2165
Publication date2023-04-15
First online date2023-04-15
Abstract

Contrasting the paradigm that methane is only produced in anoxic conditions, recent discoveries show that oxic methane production (OMP, aka the methane paradox) occurs in oxygenated surface waters worldwide. OMP drivers and their contribution to global methane emissions, however, are not well constrained. In four adjacent pre-alpine lakes, we determine the net methane production rates in oxic surface waters using two mass balance approaches, accounting for methane sources and sinks. We find that OMP occurs in three out of four studied lakes, often as the dominant source of diffusive methane emissions. Correlations of net methane production versus chlorophyll-a, Secchi and surface mixed layer depths suggest a link with photosynthesis and provides an empirical upscaling approach. As OMP is a methane source in direct contact with the atmosphere, a better understanding of its extent and drivers is necessary to constrain the atmospheric methane contribution by inland waters.

Keywords
  • Methane
  • Oxic methane production
  • Lakes
  • Mass balance
  • Limnology
Research groups
Citation (ISO format)
ORDONEZ VALDEBENITO, Cesar Fernando et al. Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. In: Nature communications, 2023, vol. 14, p. 2165. doi: 10.1038/s41467-023-37861-7
Main files (1)
Article (Published version)
Identifiers
Journal ISSN2041-1723
101views
181downloads

Technical informations

Creation18/04/2023 11:03:17
First validation19/04/2023 13:51:46
Update time19/04/2023 13:51:46
Status update19/04/2023 13:51:46
Last indexation01/11/2024 05:50:00
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack