Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks
ContributorsZaker, Neda; Haddad, Kamal; Faghihi, Reza; Arabi, Hossein; Zaidi, Habib
Published inEuropean journal of nuclear medicine and molecular imaging, vol. 49, no. 12, p. 4048-4063
Publication date2022-10
First online date2022-06-18
Abstract
Keywords
- Dynamic PET imaging
- Clinical oncology
- Deep learning
- Patlak analysis
- Lesion detectability
- Fluorodeoxyglucose F18
- Humans
- Image Processing, Computer-Assisted / methods
- Neural Networks, Computer
- Positron Emission Tomography Computed Tomography / methods
- Positron-Emission Tomography / methods
- Whole Body Imaging / method
Research groups
Funding
- Swiss National Science Foundation - Towards patient-specific hybrid whole-body PET parametric imaging [320030_176052]
- Private Foundation of Geneva University Hospitals - [RC-06–01]
Citation (ISO format)
ZAKER, Neda et al. Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks. In: European journal of nuclear medicine and molecular imaging, 2022, vol. 49, n° 12, p. 4048–4063. doi: 10.1007/s00259-022-05867-w
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
- PID : unige:165012
- DOI : 10.1007/s00259-022-05867-w
- PMID : 35716176
- PMCID : PMC9525418
Commercial URLhttps://link.springer.com/10.1007/s00259-022-05867-w
Journal ISSN1619-7070