Finding signals in the void: Improving deep latent variable generative models via supervisory signals present within data
ContributorsRamapuram, Jason Emmanuel
Number of pages161
Imprimatur date2022-03-07
Defense date2021-09-15
Abstract
Keywords
- Generative modeling
- Variational inference
- Differentiable memory
- Latent variable
- Vae
Affiliation entities
Research groups
Citation (ISO format)
RAMAPURAM, Jason Emmanuel. Finding signals in the void: Improving deep latent variable generative models via supervisory signals present within data. Doctoral Thesis, 2022. doi: 10.13097/archive-ouverte/unige:160342
Main files (1)
Thesis
Identifiers
- PID : unige:160342
- DOI : 10.13097/archive-ouverte/unige:160342
- URN : urn:nbn:ch:unige-1603426
- Thesis number : Sc. 5639