Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with Dirichlet and oblique boundary conditions
ContributorsBertoli, Guillaume Balthazar; Besse, Christophe
; Vilmart, Gilles
Published inMathematics of computation, vol. 90, no. 332, p. 2705-2729
Publication date2021-07-01
Abstract
Keywords
- Strang splitting
- Crank-Nicolson
- Diffusion-reaction equation
- Nonhomo- geneous boundary conditions
- Order reduction
Affiliation entities
Research groups
Funding
- Swiss National Science Foundation - Méthodes numériques géométriques et multi-échelles pour les équations différentielles [200020_184614]
- Swiss National Science Foundation - Analyse numerique [200020_178752]
- French National Research Agency (ANR) - Numerical boundaries and coupling [ANR-17-CE40-0025]
Citation (ISO format)
BERTOLI, Guillaume Balthazar, BESSE, Christophe, VILMART, Gilles. Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with Dirichlet and oblique boundary conditions. In: Mathematics of computation, 2021, vol. 90, n° 332, p. 2705–2729. doi: 10.1090/mcom/3664
Main files (1)
Article (Accepted version)
Identifiers
- PID : unige:155904
- DOI : 10.1090/mcom/3664
Additional URL for this publicationhttps://www.ams.org/mcom/2021-90-332/S0025-5718-2021-03664-9/
Journal ISSN0025-5718