Machine Learning Techniques for Charged Particle Tracking at the ATLAS Experiment
ContributorsAmrouche, Cherifa Sabrina
DirectorsGolling, Tobias
Defense date2021-03-26
Abstract
Keywords
- Metric Learning
- Tracking
- Search
- ATLAS
- Clustering
- High Luminosity LHC
- Deep Learning
Affiliation entities
Research groups
Citation (ISO format)
AMROUCHE, Cherifa Sabrina. Machine Learning Techniques for Charged Particle Tracking at the ATLAS Experiment. Doctoral Thesis, 2021. doi: 10.13097/archive-ouverte/unige:152041
Main files (1)
Thesis
Identifiers
- PID : unige:152041
- DOI : 10.13097/archive-ouverte/unige:152041
- URN : urn:nbn:ch:unige-1520412
- Thesis number : Sc. 5553