Scientific article
OA Policy
English

Manifestation of structural Higgs and Goldstone modes in the hexagonal manganites

Published inPhysical Review. B, Condensed Matter, vol. 102, no. 014102
Publication date2020
Abstract

Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such structural phase transitions and the Higgs- and Goldstone-boson analogues associated with the crystallographic Mexican hat potential. We show that, with the exception of systems containing only one atom type, the usual Higgs and Goldstone modes are represented by a combination of several phonon modes, with the lowest energy phonons of the relevant symmetry having substantial contribution. Taking the hexagonal manganites as a model system, we identify these modes using Landau theory, and predict the temperature dependence of their frequencies using parameters obtained from density functional theory. Separately, we calculate the additional temperature dependence of all phonon mode frequencies arising from thermal expansion within the quasi-harmonic approximation. We predict that Higgs-mode softening will dominate the low-frequency vibrational spectrum of InMnO3 between zero kelvin and room-temperature, whereas the behavior of ErMnO3 will be dominated by lattice expansion effects. We present temperature-dependent Raman scattering data that support our predictions, in particular confirming the existence of the Higgs mode in InMnO3.

Research groups
Citation (ISO format)
MEIER, Quintin N. et al. Manifestation of structural Higgs and Goldstone modes in the hexagonal manganites. In: Physical Review. B, Condensed Matter, 2020, vol. 102, n° 014102. doi: 10.1103/PhysRevB.102.014102
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
ISSN of the journal1098-0121
316views
169downloads

Technical informations

Creation04/03/2021 14:25:00
First validation04/03/2021 14:25:00
Update time16/03/2023 00:13:04
Status update16/03/2023 00:13:03
Last indexation02/10/2024 08:37:40
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack