Scientific article

Algèbres de Lie de dérivations de certaines algèbres pures

Published inJournal of pure and applied algebra, vol. 91, no. 1-3, p. 121-135
Publication date1994

Let E(X) be the H-space of homotopy self-equivalences which are homotopic to the identity of a homogeneous Kähler manifold with maximal rank. The Lie algebra of derivations of a pure differential graded algebra with zero homotopy Euler characteristic allows us to use Sullivan's minimal model to study the rational homotopy theory of E(X). As an application we compute dim in the case when X is a certain flag manifold.

Citation (ISO format)
GRIVEL, Pierre-Paul. Algèbres de Lie de dérivations de certaines algèbres pures. In: Journal of pure and applied algebra, 1994, vol. 91, n° 1-3, p. 121–135. doi: 10.1016/0022-4049(94)90137-6
ISSN of the journal0022-4049

Technical informations

Creation11/26/2010 12:36:00 PM
First validation11/26/2010 12:36:00 PM
Update time03/14/2023 4:09:35 PM
Status update03/14/2023 4:09:35 PM
Last indexation01/15/2024 9:53:07 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack