en
Scientific article
Open access
English

Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloroplasts

Published inPhotosynthesis Research, vol. 74, no. 1, p. 37-50
Publication date2002
Abstract

Chlorophyll a fluorescence rise kinetics (from 50 μs to 1 s) were used to investigate the non-photochemical reduction of the plastoquinone (PQ) pool in osmotically broken spinach chloroplasts (Spinacia oleracea L.). Incubation of the chloroplasts in the presence of exogenous NADPH or NADH resulted in significant changes in the shape of the fluorescence transient reflecting an NAD(P)H-dependent accumulation of reduced PQ in the dark, with an extent depending on the concentration of NAD(P)H and the availability of oxygen; the dark reduction of the PQ pool was saturated at lower NAD(P)H concentrations and reached a higher level when the incubation took place under anaerobic conditions than when it occurred under aerobic conditions. Under both conditions NADPH was more effective than NADH in reducing PQ, however only at sub-saturating concentrations. Neither antimycin A nor rotenone were found to alter the effect of NAD(P)H. The addition of mercury chloride to the chloroplast suspension decreased the NAD(P)H-dependent dark reduction of the PQ pool, with the full inhibition requiring higher mercury concentrations under anaerobic than under aerobic conditions. This is the first time that this inhibitory role of mercury is reported for higher plants. The results demonstrate that in the dark the redox state of the PQ pool is regulated by the reduction of PQ via a mercury-sensitive NAD(P)H-PQ oxidoreductase and the reoxidation of reduced PQ by an O2-dependent pathway, thus providing additional evidence for the existence of a chlororespiratory electron transport chain in higher plant chloroplasts.

eng
Citation (ISO format)
HALDIMANN, Pierre, TSIMILLI-MICHAEL, Merope. Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloroplasts. In: Photosynthesis Research, 2002, vol. 74, n° 1, p. 37–50. doi: 10.1023/A:1020884500821
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
ISSN of the journal0166-8595
220views
55downloads

Technical informations

Creation02/05/2019 11:16:00 AM
First validation02/05/2019 11:16:00 AM
Update time01/12/2024 1:06:30 PM
Status update01/12/2024 1:06:30 PM
Last indexation01/17/2024 4:52:49 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack