Scientific article

Topological quantum phase transition in the Ising-like antiferromagnetic spin chain BaCo2V2O8

Published inNature Physics, vol. 14, no. 7, p. 716-722
Publication date2018

Since the seminal ideas of Berezinskii, Kosterlitz and Thouless, topological excitations have been at the heart of our understanding of a whole novel class of phase transitions. In most cases, those transitions are controlled by a single type of topological objects. There are, however, some situations, still poorly understood, where two dual topological excitations fight to control the phase diagram and the transition. Finding experimental realizations of such cases is thus of considerable interest. We show here that this situation occurs in BaCo2V2O8, a spin-1/2 Ising-like quasi-one-dimensional antiferromagnet, when subjected to a uniform magnetic field transverse to the Ising axis. Using neutron scattering experiments, we measure a drastic modification of the quantum excitations beyond a critical value of the magnetic field. This quantum phase tran- sition is identified, through a comparison with theoretical calculations, to be a transition between two different types of solitonic topological object, which are captured by different components of the dynamical structure factor.

Research group
Citation (ISO format)
FAURE, Quentin et al. Topological quantum phase transition in the Ising-like antiferromagnetic spin chain BaCo<sub>2</sub>V<sub>2</sub>O<sub>8</sub>. In: Nature Physics, 2018, vol. 14, n° 7, p. 716–722. doi: 10.1038/s41567-018-0126-8
Main files (1)
Article (Published version)
ISSN of the journal1745-2473

Technical informations

Creation02/04/2019 11:44:00 AM
First validation02/04/2019 11:44:00 AM
Update time03/15/2023 3:40:30 PM
Status update03/15/2023 3:40:30 PM
Last indexation01/17/2024 4:50:01 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack