UNIGE document Scientific Article
previous document  unige:113652  next document
add to browser collection
Title

Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering

Authors
Published in Physics in Medicine and Biology. 2018, vol. 63, no. 21, p. 215010
Abstract PET images commonly suffer from the high noise level and poor signal-to-noise ratio (SNR), thus adversely impacting lesion detectability and quantitative accuracy. In this work, a novel hybrid dual-domain PET denoising approach is proposed, which combines the advantages of both spatial and transform domain filtering to preserve image textures while minimizing quantification uncertainty. Spatial domain denoising techniques excel at preserving high-contrast patterns compared to transform domain filters, which perform well in recovering low-contrast details normally smoothed out by spatial domain filters. For spatial domain filtering, the non-local mean algorithm was chosen owing to its performance in denoising high-contrast features whereas multi-scale curvelet denoising was exploited for the transform domain owing to its capability to recover small details. The proposed hybrid method was compared to conventional post-reconstruction Gaussian and edge preserving bilateral filters. Computer simulations of a thorax phantom containing three small lesions, experimental measurements using the Jaszczak phantom and clinical whole-body PET/CT studies were used to evaluate the performance of the proposed PET denoising technique. The proposed hybrid filter increased the SNR from 8.0 (non-filtered PET image) to 39.3 for small lesions in the computerized thorax phantom, while Gaussian and bilateral filtering led to SNRs of 23.3 and 24.4, respectively. For the experimental Jaszczak phantom, the contrast-to-noise ratio (CNR) improved from 10.84 when using Gaussian smoothing to 14.02 and 19.39 using the bilateral and the proposed hybrid filters, respectively. The clinical studies further demonstrated the superior performance of the hybrid method, yielding a quantification change (the original noisy OSEM image was used as reference in the absence f ground truth) in malignant lesions of  −2.4% compared to  −11.9% and  −6.6% achieved using Gaussian and bilateral filters, respectively. In some cases, the visual difference between the bilateral and hybrid filtered images is not substantial; however the improved CNR score from 11.3 by OSEM to 17.1 and 21.8 by bilateral to the hybrid filtering, respectively, demonstrates the overall gain achieved by the hybrid approach. The proposed hybrid algorithm improved the contrast, SNR and quantitative accuracy compared to Gaussian and bilateral approaches, and can be utilized as an alternative post-reconstruction filter in clinical PET/CT imaging.
Keywords PET
Identifiers
PMID: 30272565
Full text
Structures
Research group Imagerie Médicale (TEP et TEMP) (542)
Project FNS: SNRF 320030_176052
Citation
(ISO format)
ARABI, Hossein, ZAIDI, Habib. Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering. In: Physics in Medicine and Biology, 2018, vol. 63, n° 21, p. 215010. https://archive-ouverte.unige.ch/unige:113652

17 hits

3 downloads

Update

Deposited on : 2019-01-30

Export document
Format :
Citation style :