Proceedings chapter/article (contribution published in proceedings)
OA Policy
English

Décompositions de groupes par produit direct et groupes de Coxeter

Presented atGeneva and Barcelona, June 20th to 25th, 2005
Published inArzhantseva, Goulnara N., Bartholdi, L., Burillo, J., Ventura, E. (Ed.), Geometric group theory : Geneva and Barcelona Conferences, p. 75-102
PublisherBasel : Birkhäuser
Collection
  • Trends in mathematics
Publication date2007
Abstract

We provide examples of groups which are indecomposable by direct product, and more generally which are uniquely decomposable as direct products of indecomposable groups. Examples include Coxeter groups, for which we give an alternative approach to recent results of L. Paris. For a finitely generated linear group Γ, we establish an upper bound on the number of factors of which Γ can be the direct product. If moreover Γ has a finite centre or a finite abelianization, it follows that Γ is uniquely decomposable as direct product of indecomposable groups.

Keywords
  • Indecomposable groups
  • Direct products
  • Uniquely directly decomposable groups
  • Coxeter groups
  • Wedderburn–Remak–Krull–Schmidt theorem
Citation (ISO format)
DE CORNULIER, Yves, DE LA HARPE, Pierre. Décompositions de groupes par produit direct et groupes de Coxeter. In: Geometric group theory : Geneva and Barcelona Conferences. Arzhantseva, Goulnara N., Bartholdi, L., Burillo, J., Ventura, E. (Ed.). Geneva and Barcelona. Basel : Birkhäuser, 2007. p. 75–102. (Trends in mathematics)
Main files (1)
Proceedings chapter
accessLevelPublic
Secondary files (1)
Identifiers
  • PID : unige:10788
ISBN978-3-7643-8411-1
548views
166downloads

Technical informations

Creation05/07/2010 13:50:00
First validation05/07/2010 13:50:00
Update time14/03/2023 16:01:03
Status update14/03/2023 16:01:03
Last indexation04/10/2024 14:14:54
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack