UNIGE document Working paper
previous document  unige:102836  next document
add to browser collection
Title

Spanning tests for markowitz stochastic dominance

Authors
Arvanitis, Stelios
Topaloglou, Nikolas
Year 2018
Abstract Using properties of the cdf of a random variable defined as a saddle-type point of a real valued continuous stochastic process, we derive first-order asymptotic properties of tests for stochastic spanning w.r.t. a stochastic dominance relation. First, we define the concept of Markowitz stochastic dominance spanning, and develop an analytical representation of the spanning property. Second, we construct a non-parametric test for spanning via the use of an empirical analogy. The method determines whether introducing new securities or relaxing investment constraints improves the invest- ment opportunity set of investors driven by Markowitz stochastic dominance. In an application to standard data sets of historical stock market returns, we reject mar- ket portfolio Markowitz efficiency as well as two-fund separation. Hence there exists evidence that equity management through base assets can outperform the market, for investors with Markowitz type preferences.
Keywords Saddle-Type PointMarkowitz Stochastic DominanceSpanning TestLinear and Mixed integer programmingReverse S-shaped utility
Full text
Working paper (Author postprint) (431 Kb) - public document Free access
Structures
Research group Geneva Finance Research Institute (GFRI)
Citation
(ISO format)
ARVANITIS, Stelios, SCAILLET, Olivier, TOPALOGLOU, Nikolas. Spanning tests for markowitz stochastic dominance. 2018 https://archive-ouverte.unige.ch/unige:102836

91 hits

32 downloads

Update

Deposited on : 2018-03-09

Export document
Format :
Citation style :